探索 Neohesperidin (NEO) 對牙乳頭細胞的調控作用,解鎖牙本質形成的分子機制,為臨床應用提供新視角。
本文介紹了一項發表於 Arch Oral Biol 的重要研究,該研究探討了 Neohesperidin (NEO) 如何在小鼠牙乳頭細胞-23(MDPC-23)模型中促進牙本質形成。研究結果顯示,NEO 在 5-10 μmol/L 劑量範圍內,對細胞的增殖、分化、遷移和礦化具有顯著且安全的調控作用。
本研究的目的是探討 Neohesperidin (NEO) 是否能通過分子調控參與牙本質母細胞的生成。研究採用小鼠牙乳頭細胞-23(MDPC-23)作為模型,重點關注 NEO 對細胞增殖、存活/凋亡、遷移和礦化的影響,並使用不同劑量 (0, 1, 5, 10, 15, 20 μmol/L) 的 NEO 進行實驗。
使用細胞計數試劑盒-8(CCK-8)測試增殖,結果顯示,10 μmol/L 劑量的 NEO 在處理 48 小時後,細胞增殖速率顯著提升。此外,其他劑量也呈現相似的增殖曲線,表明劑量依賴性效應。
NEO 顯著提升了 MDPC-23 的存活率,同時降低了細胞凋亡比例。在細胞遷移試驗中,包括劃痕癒合試驗和 Transwell 遷移試驗,10 μmol/L 的 NEO 劑量效果最佳,表現出明顯的遷移和運動能力增強。
通過鹼性磷酸酶染色和茜素紅染色評估礦化,研究發現,NEO 在 5 μmol/L 劑量下的礦化效果最佳。此外,NEO 可顯著上調牙本質分化的四個關鍵基因,包括 Runx2、osteocalcin (OCN)、β-catenin 和 BMP-2。
研究結論顯示,NEO 在 5-10 μmol/L 劑量範圍內,對牙乳頭細胞的多層次調控具有安全性和有效性。該劑量條件下,NEO 可促進青少年牙本質橋形成,為牙科修復提供了新的臨床視角。
根據這篇研究,牙齒本身的自然結構不會重新生長,但可以透過促進牙本質(即牙齒內部硬組織)的再生,來幫助牙齒的修復。研究提到的 Neohesperidin (NEO) 在劑量範圍為 5-10 μmol/L 時,可以促進牙乳頭細胞的 增殖、分化、遷移和礦化,這些都是牙本質橋形成的重要過程。
研究指出,NEO 的臨床潛力主要針對青少年的牙本質橋形成。這種修復方式通常應用於以下情況:
深齲或牙髓暴露的修復:牙齒因齲齒或外傷導致牙本質暴露,通過誘導牙本質橋形成,可以保護牙髓免受感染。
牙髓治療後的保護:如根尖誘導術或部分牙髓切除術後,促進牙本質的生成有助於修復和加強牙齒結構。
這些應用主要是幫助修復和保護現有的牙齒組織,而不是讓牙齒「重新生長」。對於青少年而言,牙齒尚有一定的再生潛力,因此 NEO 的應用價值特別顯著。
Arch Oral Biol
. 2024 Nov:167:106055. doi: 10.1016/j.archoralbio.2024.106055. Epub 2024 Jul 24.
Neohesperidin exerts subtle yet comprehensive regulation of mouse dental papilla cell-23 in vitro
Sheng Zhang 1, Jian Guan 1, Jing Lv 1, Xinhe Dong 1, Runhang Li 1, Yuhong Wang 2, Xing-Ai Jin 3
Affiliations Expand
PMID: 39067325
Abstract
Objective: The molecular regulation of odontoblasts in dentin formation remains largely uncharacterized. Using neohesperidin (NEO), a well-documented osteoblast regulator, we investigated whether and how NEO participates in odontoblast regulation through longitudinal treatments using various doses of NEO.
Design: Mouse dental papilla cell-23 (MDPC-23) served as a model for odontoblasts. MDPC-23 were treated with various doses of NEO (0, 1, 5, 10, 15, 20 μmol/L). Proliferation was assessed using the Cell counting kit-8 assay. Survival/apoptosis was assayed by live/dead ratio. Migration capability was assessed using scratch healing and Transwell migration assays. Mineralization was assessed using alkaline phosphatase staining and alizarin red staining. The expression levels of four key genes (Runx2, osteocalcin [OCN], β-catenin, and bone morphogenetic protein [BMP]-2) representing NEO-induced differentiation of MDPC-23 were measured by quantitative reverse transcription polymerase chain reaction.
Results: The proliferation trajectories of MDPC-23 treated with the five doses of NEO demonstrated similar curves, with a rapid increase in the 10 μmol/L NEO condition after 48 h of treatment. Similar dose-dependent trajectories were observed for survival/apoptosis. All four key genes representing odontogenic differentiation were upregulated in MDPC-23 induced by NEO treatments at two optimal doses (5 μmol/L and 10 μmol/L). Optimal migration and mobility trajectories were observed in MDPC-23 treated with 10 μmol/L NEO. Optimal mineralization was observed in MDPC-23 treated with 5 μmol/L NEO.
Conclusion: NEO can subtly regulate odontoblast proliferation, differentiation, migration, and mineralization in vitro. NEO at 5-10 μmol/L offers a safe and effective perspective for clinical promotion of dentin bridge formation in teenagers.
Keywords: Dose-dependent regulation; Mouse dental papilla cell −23; Neohesperidin; Odontogenesis; Proliferation.
Copyright © 2024. Published by Elsevier Ltd.